Frailty and Sarcopenia
Hans Hobbelien
Professor in Healthy lifestyle, Ageing and Health Care Hanze
University of Applied Sciences Groningen

Lotte Kunst
Master Geriatric physical therapist
Careyn Utrecht

Board members of the Dutch association for Geriatric
Physical Therapists (NVFG)
Members of the International association for Physical
Therapists working with Older People (IPTOP)
9:00 Opening.
9:10 Healthy Ageing and the importance of physical activity.
10:00 Differences between countries
11:00 Coffee
11:15 Exercise programs, practicing the Otago Program
12:30 Lunch
13:30 Tertiary prevention (real patient)
14:30 Fall prevention
15:00 Frailty / sarcopenia and training principles
16:00 The end!
Frailty

No consensus:
- Increased risk on adverse health outcomes
- It is Dynamic and can be influenced by interventions
- A relative small event can lead towards a disproportional chance in health status.
Figure 1 Vulnerability of frail elderly people to a sudden change in health status after a minor illness The green line represents a fit elderly individual who, after a minor stressor event such as an infection, has a small deterioration in function. The red line is the same minor illness in a frail elderly.

Andrew Clegg, John Young, Steve Illife, Marcel Olde Rikkert, Kenneth Rockwood

Frailty in elderly people

The Lancet Volume 381, Issue 9868 2013 752 - 762

http://dx.doi.org/10.1016/S0140-6736(12)62167-9
Medical syndrome

Frailty is multi-dimensional

Interactive

A diversity of the expression of frailty

Frailty is dynamic

Risk Factor Approach

Frailty

- Physical Factors (muscle strength, mobility, physical activity, nutritional status)
- Personal factors (Age, education)
- Psycho-social factors (social support, mood, loneliness)
- Cognitive factors (memory, orientation, dementia)
- External factors (living situation, financial situation)
- Health status (comorbidity/multimorbidity, drug use)

Frailty is dynamic

A diversity of the expression of frailty
Model of Gobbens 2011

Age

Health promotion and prevention

Age

Prevent/Delay frailty

Diminish frailty

Prevent /Delay adverse outcomes

Life-course determinants
- age
- education
- income
- sex
- ethnicity
- marital status
- living environment
- lifestyle
- life events
- biological (including genetic)

Disease(s)
Decline in physiologic reserve

Physical frailty
Decline in:
- nutrition
- mobility
- physical activity
- strength
- endurance
- balance
- sensory functions

Psychological frailty
Decline in:
- cognition
- mood
- coping

Social frailty
Decline in:
- social relations
- social support

Adverse outcomes
Disability
Health care utilization
Death
Frailty- models

Table 2: Spectrum of Frailty Models

| Common features: Age-related vulnerability to stressors, clinically identifiable, multisystem impairment |
|---|---|
| **Medical syndrome** | **Risk factor approach** |
| • Hypothesis-driven | • Variable pathway and pathophysiology |
| • Limited number of components linked to defined underlying biologic/physiologic pathway | • Unlimited number of deficits |
| • Medical syndrome: aggregate of Sx and signs associated with morbid process constituting picture | • Geriatric syndrome: accumulated effects of impairments in multiple domains resulting in a particular adverse outcome: falls |
What do you think?

- A: Medical syndrom
- B: Accumulation of deficits
Prevalence frailty

‘Kwetsbare Ouderen’, Sociaal Cultureel Planbureau, 2011
Survival probability

Fysiotherapie en dementie

05-11-2014

Fysiotherapie en dementie
Sarcopenia

- Sarcopenia; a decrease of muscle mass
- A decrease of muscle mass leads to a decrease of muscle strength
- And this will lead eventually to a decrease of function and mobility and an increased risk for falling
Age-related changes in muscle mass in thigh cross-sectional area of two people with similar BMI
Shift of type 1 fast twitch towards type II
Lang et al 2010

A decrease in the muscle strength to stand up from a chair, walking stairs and balance
• 0.5-1% loss of muscle mass per year, starting from 40th lifeyear
• Prevalence; 9-18% in 65+ with an increase to 30% above 80
• Multiple factors involved in this decrease; Inactivity (lifestyle) biological (inflammation) and clinical factors (diseases)
• Risk on disability in men larger than in women (OR resp. 3.5 and 1.5)
• Include sarcopenia in your problem analysis in all 65+ patient

• A good indication of general strength is hand grip force as measured by a Handheld Dynamometer (HHD)
To increase aerobic capacity; each day 30 to 60 minutes with moderate intensity
To increase force; at least 2 times a week with weights and functional (staircase), moderate severe intensity
To increase flexibility at least 2 minutes a day → active stretching exercises
Table 1
Categories of exercise intensity and the subjective and objective measures [both absolute and relative] accompanying each category. The relative intensity measures such as % HR\text{max}, %HRR [heart rate reserve = HR\text{max} – resting HR] and %VO\text{2max} [maximal oxygen uptake] will not always correspond to the same RPE among individuals nor will the ability of clients to exercise for a specific duration at each intensity since this varies depending on training status and other personal characteristics. Subjective measures are from Borg’s RPE scales where C = category scale [6–20] and C-R = category-ratio scale [0–10] [7].

<table>
<thead>
<tr>
<th>Intensity category</th>
<th>Objective measures</th>
<th>Subjective measures</th>
<th>Descriptive measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEDENTARY</td>
<td>< 1.6 METs</td>
<td>RPE (C): < 8</td>
<td>• activities that usually involve sitting or lying and that have little additional movement and a low energy requirement</td>
</tr>
<tr>
<td></td>
<td>< 40% HR\text{max}</td>
<td>RPE (C-R): < 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 20% HRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 20% VO\text{2max}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT</td>
<td>1.6 < 3 METs</td>
<td>RPE (C): 8-10</td>
<td>• an aerobic activity that does not cause a noticeable change in breathing rate</td>
</tr>
<tr>
<td></td>
<td>40 < 55% HR\text{max}</td>
<td>RPE (C-R): 1-2</td>
<td>• an intensity that can be sustained for at least 60 minutes</td>
</tr>
<tr>
<td></td>
<td>20 < 40% HRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 < 40% VO\text{2max}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODERATE</td>
<td>3 < 6 METs</td>
<td>RPE (C): 11-13</td>
<td>• an aerobic activity that is able to be conducted whilst maintaining a conversation uninterrupted</td>
</tr>
<tr>
<td></td>
<td>55 < 70% HR\text{max}</td>
<td>RPE (C-R): 3-4</td>
<td>• an intensity that may last between 30 and 60 minutes</td>
</tr>
<tr>
<td></td>
<td>40 < 60% HRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 < 60% VO\text{2max}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIGOROUS</td>
<td>6 < 9 METs</td>
<td>RPE (C): 14-16</td>
<td>• an aerobic activity in which a conversation generally cannot be maintained uninterrupted</td>
</tr>
<tr>
<td></td>
<td>70 < 90% HR\text{max}</td>
<td>RPE (C-R): 5-6</td>
<td>• an intensity that may last up to about 30 minutes</td>
</tr>
<tr>
<td></td>
<td>60 < 85% HRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 < 85% VO\text{2max}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH</td>
<td>≥ 9 METs</td>
<td>RPE (C): ≥ 17</td>
<td>• an intensity that generally cannot be sustained for longer than about 10 minutes</td>
</tr>
<tr>
<td></td>
<td>≥ 90% HR\text{max}</td>
<td>RPE (C-R): ≥ 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 85% HRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 85% VO\text{2max}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activity norm values

- Dutch: 30 minutes moderate severe physical active 5 days a week (preferably 7)
- Fitnorm: at least 3 x a week een vigorous physical activity
- Nursinghome residents: every day 15-30 minutes moderate severe physical active in several bouts (daily activity can be moderate severe allready).
- ACSM: 150 minutes a week (30 min. a day, 5 days a week) moderate severe. At least 10 minutes without a break, (ADL and other daily activities not included).
Test uw kennis

What percentage of age 75+ is in compliance with the Dutch Norm.

- A: 10%
- B: 20%
- C: 30%
- D: >40%
Percentage inactive/active adults in the Netherlands

<table>
<thead>
<tr>
<th>Leeftijd</th>
<th>inactive</th>
<th>Dutch norm</th>
<th>Fitnorm</th>
<th>Combinorm</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-34</td>
<td>2.7</td>
<td>59.1</td>
<td>27.0</td>
<td>68.1</td>
</tr>
<tr>
<td>35-54</td>
<td>4.2</td>
<td>63.4</td>
<td>21.7</td>
<td>69.5</td>
</tr>
<tr>
<td>55-64</td>
<td>4.0</td>
<td>59.1</td>
<td>19.3</td>
<td>66.9</td>
</tr>
<tr>
<td>65-74</td>
<td>6.4</td>
<td>56.4</td>
<td>13.4</td>
<td>62.5</td>
</tr>
<tr>
<td>75+</td>
<td>21.2</td>
<td>46.3</td>
<td>5.6</td>
<td>51.8</td>
</tr>
</tbody>
</table>
A training program for frail elderly

- Just frail: strength, endurance, walking speed. Start easy and build up progressively
- Severe frail: strength, endurance, walking speed. Start easy and build up slowly with attention for ADL, flexibility and functional mobility
- Circuit training to adapt individually
Strenght

- Main muscle groups
- 2-3 trainingsession a week (with home training program)
- Build up, up to 80% 1RM
Endurance

- 2-3 training session a week
- Build up, up to 80% HRR Or 12-16 on Borgscale
Thank you for your attention!
And success in your further career

j.s.m.hobbelen@pl.hanze.nl
Thank you